Personalize / Client / describe_solution_version

describe_solution_version#

Personalize.Client.describe_solution_version(**kwargs)#

Describes a specific version of a solution. For more information on solutions, see CreateSolution

See also: AWS API Documentation

Request Syntax

response = client.describe_solution_version(
    solutionVersionArn='string'
)
Parameters:

solutionVersionArn (string) –

[REQUIRED]

The Amazon Resource Name (ARN) of the solution version.

Return type:

dict

Returns:

Response Syntax

{
    'solutionVersion': {
        'name': 'string',
        'solutionVersionArn': 'string',
        'solutionArn': 'string',
        'performHPO': True|False,
        'performAutoML': True|False,
        'recipeArn': 'string',
        'eventType': 'string',
        'datasetGroupArn': 'string',
        'solutionConfig': {
            'eventValueThreshold': 'string',
            'hpoConfig': {
                'hpoObjective': {
                    'type': 'string',
                    'metricName': 'string',
                    'metricRegex': 'string'
                },
                'hpoResourceConfig': {
                    'maxNumberOfTrainingJobs': 'string',
                    'maxParallelTrainingJobs': 'string'
                },
                'algorithmHyperParameterRanges': {
                    'integerHyperParameterRanges': [
                        {
                            'name': 'string',
                            'minValue': 123,
                            'maxValue': 123
                        },
                    ],
                    'continuousHyperParameterRanges': [
                        {
                            'name': 'string',
                            'minValue': 123.0,
                            'maxValue': 123.0
                        },
                    ],
                    'categoricalHyperParameterRanges': [
                        {
                            'name': 'string',
                            'values': [
                                'string',
                            ]
                        },
                    ]
                }
            },
            'algorithmHyperParameters': {
                'string': 'string'
            },
            'featureTransformationParameters': {
                'string': 'string'
            },
            'autoMLConfig': {
                'metricName': 'string',
                'recipeList': [
                    'string',
                ]
            },
            'optimizationObjective': {
                'itemAttribute': 'string',
                'objectiveSensitivity': 'LOW'|'MEDIUM'|'HIGH'|'OFF'
            },
            'trainingDataConfig': {
                'excludedDatasetColumns': {
                    'string': [
                        'string',
                    ]
                }
            },
            'autoTrainingConfig': {
                'schedulingExpression': 'string'
            }
        },
        'trainingHours': 123.0,
        'trainingMode': 'FULL'|'UPDATE'|'AUTOTRAIN',
        'tunedHPOParams': {
            'algorithmHyperParameters': {
                'string': 'string'
            }
        },
        'status': 'string',
        'failureReason': 'string',
        'creationDateTime': datetime(2015, 1, 1),
        'lastUpdatedDateTime': datetime(2015, 1, 1),
        'trainingType': 'AUTOMATIC'|'MANUAL'
    }
}

Response Structure

  • (dict) –

    • solutionVersion (dict) –

      The solution version.

      • name (string) –

        The name of the solution version.

      • solutionVersionArn (string) –

        The ARN of the solution version.

      • solutionArn (string) –

        The ARN of the solution.

      • performHPO (boolean) –

        Whether to perform hyperparameter optimization (HPO) on the chosen recipe. The default is false.

      • performAutoML (boolean) –

        When true, Amazon Personalize searches for the most optimal recipe according to the solution configuration. When false (the default), Amazon Personalize uses recipeArn.

      • recipeArn (string) –

        The ARN of the recipe used in the solution.

      • eventType (string) –

        The event type (for example, ‘click’ or ‘like’) that is used for training the model.

      • datasetGroupArn (string) –

        The Amazon Resource Name (ARN) of the dataset group providing the training data.

      • solutionConfig (dict) –

        Describes the configuration properties for the solution.

        • eventValueThreshold (string) –

          Only events with a value greater than or equal to this threshold are used for training a model.

        • hpoConfig (dict) –

          Describes the properties for hyperparameter optimization (HPO).

          • hpoObjective (dict) –

            The metric to optimize during HPO.

            Note

            Amazon Personalize doesn’t support configuring the hpoObjective at this time.

            • type (string) –

              The type of the metric. Valid values are Maximize and Minimize.

            • metricName (string) –

              The name of the metric.

            • metricRegex (string) –

              A regular expression for finding the metric in the training job logs.

          • hpoResourceConfig (dict) –

            Describes the resource configuration for HPO.

            • maxNumberOfTrainingJobs (string) –

              The maximum number of training jobs when you create a solution version. The maximum value for maxNumberOfTrainingJobs is 40.

            • maxParallelTrainingJobs (string) –

              The maximum number of parallel training jobs when you create a solution version. The maximum value for maxParallelTrainingJobs is 10.

          • algorithmHyperParameterRanges (dict) –

            The hyperparameters and their allowable ranges.

            • integerHyperParameterRanges (list) –

              The integer-valued hyperparameters and their ranges.

              • (dict) –

                Provides the name and range of an integer-valued hyperparameter.

                • name (string) –

                  The name of the hyperparameter.

                • minValue (integer) –

                  The minimum allowable value for the hyperparameter.

                • maxValue (integer) –

                  The maximum allowable value for the hyperparameter.

            • continuousHyperParameterRanges (list) –

              The continuous hyperparameters and their ranges.

              • (dict) –

                Provides the name and range of a continuous hyperparameter.

                • name (string) –

                  The name of the hyperparameter.

                • minValue (float) –

                  The minimum allowable value for the hyperparameter.

                • maxValue (float) –

                  The maximum allowable value for the hyperparameter.

            • categoricalHyperParameterRanges (list) –

              The categorical hyperparameters and their ranges.

              • (dict) –

                Provides the name and range of a categorical hyperparameter.

                • name (string) –

                  The name of the hyperparameter.

                • values (list) –

                  A list of the categories for the hyperparameter.

                  • (string) –

        • algorithmHyperParameters (dict) –

          Lists the algorithm hyperparameters and their values.

          • (string) –

            • (string) –

        • featureTransformationParameters (dict) –

          Lists the feature transformation parameters.

          • (string) –

            • (string) –

        • autoMLConfig (dict) –

          The AutoMLConfig object containing a list of recipes to search when AutoML is performed.

          • metricName (string) –

            The metric to optimize.

          • recipeList (list) –

            The list of candidate recipes.

            • (string) –

        • optimizationObjective (dict) –

          Describes the additional objective for the solution, such as maximizing streaming minutes or increasing revenue. For more information see Optimizing a solution.

          • itemAttribute (string) –

            The numerical metadata column in an Items dataset related to the optimization objective. For example, VIDEO_LENGTH (to maximize streaming minutes), or PRICE (to maximize revenue).

          • objectiveSensitivity (string) –

            Specifies how Amazon Personalize balances the importance of your optimization objective versus relevance.

        • trainingDataConfig (dict) –

          Specifies the training data configuration to use when creating a custom solution version (trained model).

          • excludedDatasetColumns (dict) –

            Specifies the columns to exclude from training. Each key is a dataset type, and each value is a list of columns. Exclude columns to control what data Amazon Personalize uses to generate recommendations.

            For example, you might have a column that you want to use only to filter recommendations. You can exclude this column from training and Amazon Personalize considers it only when filtering.

            • (string) –

              • (list) –

                • (string) –

        • autoTrainingConfig (dict) –

          Specifies the automatic training configuration to use.

          • schedulingExpression (string) –

            Specifies how often to automatically train new solution versions. Specify a rate expression in rate(value unit) format. For value, specify a number between 1 and 30. For unit, specify day or days. For example, to automatically create a new solution version every 5 days, specify rate(5 days). The default is every 7 days.

            For more information about auto training, see Creating and configuring a solution.

      • trainingHours (float) –

        The time used to train the model. You are billed for the time it takes to train a model. This field is visible only after Amazon Personalize successfully trains a model.

      • trainingMode (string) –

        The scope of training to be performed when creating the solution version. A FULL training considers all of the data in your dataset group. An UPDATE processes only the data that has changed since the latest training. Only solution versions created with the User-Personalization recipe can use UPDATE.

      • tunedHPOParams (dict) –

        If hyperparameter optimization was performed, contains the hyperparameter values of the best performing model.

        • algorithmHyperParameters (dict) –

          A list of the hyperparameter values of the best performing model.

          • (string) –

            • (string) –

      • status (string) –

        The status of the solution version.

        A solution version can be in one of the following states:

        • CREATE PENDING

        • CREATE IN_PROGRESS

        • ACTIVE

        • CREATE FAILED

        • CREATE STOPPING

        • CREATE STOPPED

      • failureReason (string) –

        If training a solution version fails, the reason for the failure.

      • creationDateTime (datetime) –

        The date and time (in Unix time) that this version of the solution was created.

      • lastUpdatedDateTime (datetime) –

        The date and time (in Unix time) that the solution was last updated.

      • trainingType (string) –

        Whether the solution version was created automatically or manually.

Exceptions